Ювелирные украшения из жемчуга от 189 рублей в Москве и Санкт–Петербурге, по России доставка бесплатно.


Совсем недавно стала развиваться новая наука — биологическая минералогия. Она изучает строение, свойства, состав, условия образования и изменения объектов, которые находятся на стыке биологии и минералогии. К ним относятся продукты деятельности живых клеток: кости и зубы человека и животных, раковины моллюсков, жемчуг, скелет кораллов, скорлупа птичьих яиц, отолиты и другие объекты живой природы.

Биологическая минералогия как генетическая наука исходит из того, что неживое, возникшее из живого, является его частью и они тесно взаимосвязаны. Существование в природе форм, в которых соединены свойства живого и неживого (например, вирусов), наглядно подтверждает пример внутреннего единства неорганического и органического мира.

Главным объектом исследования биологической минерализации является минерально-органический агрегат. Он состоит из органических веществ и минеральных индивидов, имеющих определенные форму, размер, строение, свойства и состав. В структуре многих индивидов имеются специфические внутренние элементы. От их упорядоченного сочетания во многом зависят свойства всего агрегата.

Основная задача биологической минералогии — всестороннее исследование взаимоотношения неорганической и органической природы, а также детальное изучение минеральных продуктов живой природы в процессе их развития и изменения. Конкретная практическая задача науки — выявить роль организмов при формировании и разрушении месторождений полезных ископаемых (железа, серы, фосфора, марганца и др.).

Биологическая минералогия развивает представление профессора Д. П. Григорьева о минерале как об организме. Оно выступает сейчас как наиболее актуальное и перспективное. Сущность нового подхода к минералу выражается следующим образом: «Минералы, т. е. кристаллы и зерна, в форме которых реально существуют природные химические соединения и физико-химические фазы, выступают в нашей науке каждый как целостный организм, индивид, со своей анатомией, всегда по-своему живущий... Познание минерала как организма и его естественной истории, обусловливающей все качества, условия и места нахождения минералов, есть назначение, прерогатива минералогической науки» [Григорьев, 1976]. То есть минеральный индивид рассматривается как своеобразная модель живого организма. Такой подход к минералу раскрывает те стороны строения, свойств и поведения, которые раньше рассматривались только на биологических объектах и не принимались во внимание минералогами.

Специфика минерально-органических агрегатов состоит в том, что возникновение и рост их объясняются не законами физики и химии, как это имеет место в минералогии, а биохимическими законами развития живой клетки. Они еще не нашли столь четкого выражения, как известные законы физики и химии, регулирующие процессы минералообразования в неживой природе. К тому же в организме физические и химические законы тесно взаимодействуют с биохимическими законами и не только подчиняются им, но и имеют иное применение. Клетка — структурная единица организма, она рассматривается как система взаимосвязанных структур и процессов, протекающих по программе дифференциации органов. В этом сказывается универсальность клетки. Природа скупа на объяснения и щедра на окончательные результаты. Поэтому исследователю приходится часто затрачивать массу труда и времени, чтобы вскрыть всю причинную цепь событий.

Минералы недр, возникшие многие миллионы лет назад, как и «живые» минералы, находящиеся в организмах, являются своеобразными регистраторами событий, свидетелями которых они были в разное время. Трудность, а то и полная невозможность непосредственного наблюдения этих событий заставляют нас обратиться к минералу как к важному документу его истории. В особенностях состава, строения и свойств минерала отражены особенности его рождения, роста и изменения. Поэтому восстановление истории минерала — главная минералогическая задача. Достаточно иногда лишь взглянуть на минерал, чтобы понять, насколько она сложна.

Основным источником минералогических знаний является минеральный индивид. Он же и главный объект минералогических исследований. Современная минералогия располагает большим арсеналом методов, позволяющих исследовать индивид и его минералогическую историю. Задача значительно усложняется в том случае, когда мы приступаем к изучению агрегата, и становится вообще трудновыполнимой, если объект исследования — минерально-органический агрегат. Трудность заключается прежде всего в том, что окружающая биогенный минерал органическая оболочка, в которую заключен минерал и посредством которой происходит его питание, плотно сцеплена с ним. Эта оболочка - неотъемлемая часть агрегата. Оба вещества плохо разделяются, особенно трудно отделить минеральную фазу. Поэтому природа биогенных минералов до последнего времени остается слабоизученной, а процессы биоминерализации все еще исследованы недостаточно. Очень мало известно и о параметрах минералообразующей среды в том пространственно-временном интервале, в котором происходит образование минерально-органического агрегата. Следует учитывать, что она представляет собой сложную систему с непрерывно меняющимися параметрами. А ведь минерал фиксирует в особенностях своего состава, свойств и строения все изменения, происшедшие в минералообразующей среде. Несомненно, что воссоздание возможно полной картины всех событий, зафиксированных в минерале, имеет большое значение как для объяснения условий его образования, так и для установления ряда закономерностей в минералогии, биологии и в смежных науках. Решении этой проблемы позволит глубже исследовать минеральный уровень органической материи, характерной особенностью которого является кристаллическое состояние. Оно определяет систему свойств, через которые проявляется сущность минерала. Минеральные продукты живой клетки служат наглядным подтверждением сложности минерального уровня материи.

Одно из детальных исследований биогенных кристаллов провел С. Н. Голубев [1981]. Фактические данные, полученные этим автором, принимаются в качестве достоверных и широко используются нами при характеристика процесса биоминерализации.

Минерально-органические агрегаты имеют кристаллическое строение и при рентгеновских исследованиях обнаруживают дифракцию рентгеновских лучей. Используя методы электронной микроскопии, можно не только непосредственно увидеть исследованные объекты, но и изучить детали реальной структуры биогенных кристаллов. Разумеется, по идеализированной решетке они представляют собой «обычные» кристаллы, но образовавшиеся и выросшие в живых организмах. Облик биогенных кристаллов, всегда подчиненный структуре вещества, по-разному формируется под воздействием физико-химичеких факторов. В настоящее время еще мало чисто описательных данных о морфологических особенностях биогенных кристаллов. Поэтому выявить по этим данным влияние отдельных физико-химических факторов на форму образующихся кристаллов оказалось крайне затруднительным.

Биогенные кристаллы минерализованных структур рассматриваются как реальные кристаллы. В отличие от идеальных кристаллов они характеризуются наличием разного рода дефектов. Это преимущественно объемные, но несоизмеримо малые по сравнению с величиной кристаллов нарушения правильного пространственного размещения атомов в кристаллической решетке. В биогенных кристаллах наиболее распространены такие дефекты: упаковки, замещения, вакансии, примесные атомы, границы блоков, двойников, включения других фаз, размеры, форма и свойства дефектов определяются структурой биогенного минерала. Наиболее часто они располагаются в междоузлиях кристаллической решетки. Именно наличие дефектов в кристаллах служит причиной изменения их свойств. В этом отношении биогенные кристаллы представляют собой объект, заслуживающий всестороннего изучения. Подход к ним как к реальным кристаллическим образованиям имеет большое значение не только для постановки и решения основных проблем биоминерализации, но и для понимания многих вопросов минералообразования.

Дефектное строение биогенных кристаллов подтверждается результатами изучения ряда их физических констант. В частности, твердость в строгом смысле этого понятия является тем свойством, которое определяется в основном дефектами строения кристаллических веществ. Среди кристаллов биологического происхождения встречаются образцы как с повышенной, так и с пониженной твердостью по сравнению с обычными аналогичными кристаллами. К ним относится и арагонит речного жемчуга. Аномальное уменьшение его твердости на плоскости {001} по сравнению с обычным арагонитом следует связывать со значительно большим количеством на ней дефектов. На плоскости {110} арагонита жемчуга наблюдается обратная картина: ее твердость оказалась несколько выше, чем на такой же грани обычного арагонита. Таким образом, анизотропия твердости на гранях кристаллов биогенного арагонита подтверждает неидеальное его строение.

Биогенные кристаллы не имеют кристаллографически правильной формы. Это объясняется в основном тем, что они сложены из более мелких кристаллитов, которые, как и весь кристалл, обволакиваются пленкой органической матрицы. Специальные исследования показали, что органическая матрица осуществляет биорегуляцию кристаллообразования. Многие кристаллы обладают блоково-мозаичными, выпуклыми и вогнутыми гранями, образующимися на заключительных этапах роста.

Как уже упоминалось, жемчуг, как и раковина, состоит из слоев кристаллического карбоната кальция — арагонита; в свою очередь, слой формируется из пластинок или призмочек этого минерала, а последние могут быть сложены из множества более мелких кристаллитов. Так образуется целый ряд соподчиненных, включенных друг в друга кристаллических элементов. При этом элементы более мелкого порядка могут быть как взаимно параллельны по отношению к включающему их структурному элементу высшего порядка, так и непараллельны, хаотичны. В арагоните жемчуга кристаллографические оси соседних кристаллитов почти параллельны. Тогда вся совокупность внутренних кристаллитов образует составной монокристалл арагонита. Как показали микроскопические исследования, такие кристаллы неидеальны не только из-за своего сложного внутреннего строения, далеко не идеальна и сама форма составного многогранника арагонита. В большинстве случаев она заметно отличается от призматической. Имеются дефекты и в других биогенных кристаллах, в частности в оксиапатите — основном минеральном компоненте костной ткани.

Словом, неидеальное строение многогранников биогенных веществ скорее правило, чем исключение. Оно усложняет принятую относительность понятия «монокристалл». Наиболее целесообразно его употреблять лишь при рассмотрении если не идеальных, то идеализированных кристаллов. По этому признаку биогенные кристаллы не отличаются от соответствующих «земных» кристаллов.

Основная закономерность биоминерализации состоит в том, что органическая матрица сильно влияет на характер биогенного минералообразования. Она определяет центры зарождения будущих кристаллов и способствует их росту. Отличительная особенность матрицы — ее сравнительно постоянный состав в разных организмах, включающий белки коллагеновой группы, высокомолекулярные полисахариды, фосфолипиды. В аминокислотный состав органического вещества жемчуга входит 18 аминокислот (глицин, тирозин, аланин, валин, серин и др.). В органическом веществе биогенных кристаллов других веществ соотношение аминокислот иное. До сих пор остается неясным, какой механизм регулирует количество и состав аминокислот в организме.

Органическая матрица имеет вид губки, погруженной и физиологический раствор. Ее можно рассмотреть в любом минерально-органическом агрегате после осторожного растворения минеральной части. Важно подчеркнуть, что в объеме матрицы происходит зарождение и рост биогенных кристаллов. Эти процессы регулируются биологическими организмами, исследование которых началось совсем недавно. Биорегулирующее значение матрицы сказывается в определяющем влиянии ее не только на структуру и геометрию биогенных кристаллов, но и на сочетание их между собой. Матрица или ее отдельные участки обладают известным сродством к возникающему на ее основе минеральному компоненту. Такое сродство объясняется близостью строения реакционноспособных ферментов матрицы и пространственной конфигурации ионов в элементарной ячейке кристаллизующегося вещества и их тесным взаимодействием. Только так может быть обеспечено хорошее пространственное соответствие между структурными элементами органического и минерального компонентов образующегося биогенного кристалла. Однако минеральный уровень такого взаимодействия изучен недостаточно. По-видимому, в его основе лежат два принципа — эпитаксия и комплексообразование. Эпитаксия — закономерное срастание кристаллов веществ различного состава, обусловленное близостью строения кристаллической решетки или отдельных плоских сеток рядов решетки срастающихся минералов. Таким образом, эпитаксия минеральной фазы на органическом веществе предопределяется наличием сходных мотивов в структуре обоих веществ. При этом отдельные реакционноспособные участки молекул матрицы становятся центрами зарождения кристаллизующегося на их основе биогенного минерала. Из сказанного можно заключить, что избирательная минерализация матрицы обеспечивается высокоупорядоченным ее строением. При биогенной оксиапатитовой минерализации следует предположить близкое сходство конфигурации тетраэдричного радикала РО4 3- определенными участками матрицы. В случае кальцит-арагонитовой минерализации (при образовании жемчуга) участки матрицы находятся в сфере валентного взаимодействия с катионами кальция и плоскими анионами СОз 2-, образуя особые комплексы в строгом химическом смысле этого понятия. Несомненно, что наряду с валентными взаимодействиями большую роль при образовании таких комплексов играют и более слабые связи — водородные, Ван-дер-Ваальса и др. Доля этих связей в минерально-органических комплексах не установлена.

В последнее время высказывается предположение, что анионы СО3 2- препятствуют кристаллизации фосфатов кальция внутри организма, а фосфатные и другие фосфорсодержащие анионы не допускают возможности кристаллизации карбоната кальция. Действие анионов, препятствующих кристаллизации минеральных соединений, связано с поглощением их гранями зародышевых кристалликов минеральной фазы.

Характер растворов, в которых происходит биогенное минералообразование, изучен очень слабо. Голубев [1981] полагает, что биогенные кристаллы растут в метастабильных растворах, недонасыщенных соответствующими солями. Это не противоречит главным законам физики. Концентрация солей в таких растворах неблагоприятна как для роста кристаллов на привнесенных из вне зародышах, так и для зарождения биогенных кристаллов на случайных пылинках поверхности матрицы. Такие растворы находятся у нижнего предела метастабильной области и устойчивы неопределенно долгое время. Голубев установил, что после искусственного нарушения структуры органической матрицы выпавшие из такого раствора кристаллы теряют биологическую специфичность и могут продолжать свой рост в насыщенных растворах, как и при обычной кристаллизации.

Вода —постоянный компонент минералообразующих растворов и один из строительных блоков организма. За счет гидратации и других взаимодействий вода входит во многие структурные элементы клетки, в межклеточное пространство и в органическую матрицу. Универсальной функцией воды является ее цементирующая роль в форме водородных связей как между отдельными частицами и компонентами клетки, так и между минеральным веществом и реакционноспособными участками матрицы. К тому же она предшественник и продукт преобладающего большинства процессов в организме, химический смысл которых сводится к реакциям гидратирования, дегидратирования, конденсации, в конечном итоге приводящим к образованию циклических и ациклических соединений. Вода в минералообразующих растворах, как правило, способствует образованию биогенных кристаллов, однако в отдельных случаях она может производить тормозящее влияние на их возникновение и рост. Иногда она существенно ограничивает проявление свойств биогенных кристаллов или из присущего им многообразия выдвигает на передний план определенные их качества. Из сказанного видно, что вода — исключительно важный фактор матрицы жизни.

Образование центров начальной кристаллизации происходит в строго упорядоченных точках матрицы — там, где энергетическая выгодность процесса зарождения кристаллической фазы обусловливается тесным сродством между минеральным и органическим компонентами. Голубев рассматривает сильное специфическое взаимодействие между ними в качестве фактора, благоприятствующего нейтрализации поверхностной энергии кристаллов, что делает систему энергетически выгодной.

Труднее объяснить возникновение колломорфного слоя в жемчуге, найденном в черноморской мидии. Этот слой, видимо, состоит из редко встречающегося в природе аморфного карбоната кальция, выпавшего внутри организма из коллоидных растворов. Вполне возможно, что подобное строение имеет и тонкий слой, отмеченный в раковинах некоторых моллюсков между призматическим и перламутровым слоями. В таком случае следует допустить, что роль органической матрицы в образовании многочисленных центров кристаллизации карбонатных частиц была невелика. К минимуму должна быть сведена роль матрицы как питающего агента, ибо мельчайшие частицы карбоната не увеличиваются в размерах. Роль питающей системы, по-видимому, выполняли многочисленные поры, пронизывающие колломорфный слой [Шнюков, Деменко, 1983]. Эта несколько идеализированная картина образования колломорфного карбоната в жемчуге служит хорошим примером сложности процессов, происходящих в организме и сопровождающихся отложениями минеральных веществ.

Процессы осаждения карбоната кальция в биологических средах весьма сложны. Моделирование их в лабораторных условиях сопряжено с трудностями, связанными в первую очередь с выбором параметров минералообразующей среды — величин, характеризующих ее состояние.

Жемчуг, как и другие минеральные образования, представляет собой агрегат кристаллов. Однако в отличие от обычных минеральных агрегатов биогенные кристаллы (и слагающие их кристаллиты) не только не срастаются, но даже не соприкасаются между собой. Дело в том, что каждый кристаллический индивид обволакивается, как чехлом, органической пленкой, связанной с матрицей. Толщина пленки зависит от величины кристалла. Она проницаема для минералообразующих физиологических растворов, питается ими и не подвергается процессу минерализации. Такое явление, названное Голубевым принципом обволакивающих пленок, наблюдается если не во всех, то в большинстве биогенных кристаллов. Роль обволакивающих пленок прежде всего генетическая: подобно системе подводящих каналов, пленки обеспечивают питание минерально-органического агрегата. В противном случае не происходил бы их рост. Нарушение принципа обволакивающих пленок ведет к прекращению роста биогенных кристаллов и в ряде случаев способствует протеканию в них необратимых процессов.

Молекулярная природа взаимодействия органического и минерального компонентов биогенного минерала остается неизвестной. В ней скрыт весьма интересный механизм, приводящий к кратковременным остановкам роста биогенных кристаллов и существенно ограничивающий рост всего минерально-органического агрегата. Так, биологическая минерализация в процессе формирования жемчуга проходит в полном соответствии с моделью обволакивающих пленок. Однако рост призматических кристаллов жемчужины многократно прерывается. Кратковременные остановки в росте кристаллов отчетливо фиксируются скоплениями темного органического вещества; оно продолжает выделяться, несмотря на прекращение роста арагонита, и покрывает торцы его кристаллов маломощными слоями. В дальнейшем рост кристалла арагонита возобновляется, а чрезмерное выделение органики прекращается. Другими словами, процесс минералообразования внутри организма происходит скачками. Многократное повторение этого процесса придает формирующемуся минерально-органическому агрегату концентрически-зональное строение. Причины зональности разные. Возможно, зональное строение жемчужины отражает периодичность дефектной структуры органических молекул матрицы или же до деталей наследует тонкую структуру их, в частности нередко наблюдаемую поперечную исчерченность. Не исключено, что зональная структура жемчуга и других биогенных кристаллов связана с ростовыми пульсациями, которые могут быть вызваны чистыми изменениями температуры воды, ее состава, условиями питания моллюсков и другими факторами.

На морфологию выпадающих из раствора биогенных кристаллов существенно влияют примеси некоторых химических элементов. Они тормозят или ускоряют рост кристаллических граней, иногда способствуют закрученности кристаллов. В ряде случаев при преобладании в растворе стронция из него выпадает арагонит, а при большом количестве магния — кальцит. На скорость роста биогенных минералов воздействует также величина рН раствора.

Своеобразным регистратором процессов, сопровождающих биоминерализацию, является изменение изотопного состава ряда элементов. Это изменение очень невелико, так что изотопный состав элементов можно считать практически постоянным. Однако масштабы явлений, происходящих в организмах, и их продолжительность приводят к некоторому разделению изотопов, поддающемуся измерению на современных масс-спектрометрах. При исследовании изотопных эффектов углерода и кислорода необходимо учитывать биологический фактор, под которым подразумевается закономерное распределение изотопов химических элементов в объектах живой материи. Наиболее вероятной причиной биологического фракционирования изотопов углерода и кислорода при образовании органических карбонатов, в том числе и жемчуга, следует считать участие в этом процессе метаболической углекислоты, обедненной «тяжелыми» изотопами. Красивые жемчужины образуются в узком интервале изменения соотношения изотопов кислорода.

В процессе роста происходит самоупорядочение структуры индивидов в объеме минерально-органических агрегатов. Однако отмеченная неидеальность биогенных кристаллов и ряд других факторов способствуют тому что строгая упорядоченность минеральных индивидов в таких агрегатах отсутствует.

Процессы биоминерализации широко распространены в природе, они характеризуются большой мобильностью и пластичностью. Этому способствует то обстоятельство, что многие биологические вещества и структуры, служащие субстратом для минеральной фазы, проявляют свойства, которые присущи жидким ристаллам. Жидкокристаллический порядок в биологических структурах играет большую роль в функциях и свойствах живой материи.

Ювелирные украшения из жемчуга от 189 рублей в Москве и Санкт–Петербурге, по России доставка бесплатно.